充值活动已开启,快来参与吧 关闭充值活动
试题
  • 试卷
  • 试题
学段: 学科:
上传图片
或拖拽图片,或截图后Ctrl + V上传图片
图片上传失败(原因:图片不够清晰或未拍摄完整)
(图片大小不超过10M)
今日剩余可使用:0
搜索
清空
当前位置: 初中数学 /
  • 1. 问题情境:如题22-1图,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,点A,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.

    方案设计:如题22-2图,AB=8米,AB的垂直平分线与抛物线交于点P,与AB交于点O,点P是抛物线的顶点,且PO=16米.玥玥同学设计的方案如下:

    第一步:在线段OP上确定点C,使∠ACB=90°,用篱笆沿线段AC,BC分隔出△ABC区域,种植串串红;

    第二步:在线段CP上取点F(不与C,P重合),过点F作AB的平行线,交抛物线于点D,E.用篱笆沿DE,CF将线段AC,BC与抛物线围成的区域分隔成三部分,分别种不同花色的月季.

    方案实施:学校采用了玥玥的方案,在完成第一步△ABC区域的分隔后,发现仅剩9米篱笆材料.若要在第二步分隔中恰好用完9米材料,需确定DE与CF的长.为此,如题22-3图建立平面直角坐标系.解决问题:

    1. (1) 求抛物线的函数表达式.
    2. (2) 当9米材料恰好用完时,分别求DE与CF的长.
    3. (3) 种植区域分隔完成后,玥玥又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在线段AC,BC上.求符合设计要求的矩形周长的最大值.